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ABSTRACT

Question: Can the reproductive benefits gained by mitigating the costs of self-pollination
drive the evolution of nectarless flowers?

Features of model: Complementary analytical and simulation models determined the optimal
proportion of nectarless flowers (‘nectar phenotype’) to maximize male reproductive success.
Models considered a range of self-pollination costs and pollinator abundances. In the analytical
model, equal numbers of each nectar phenotype were present. Pollinators used simple rules of
behaviour, related to their current host plant’s perceived nectar status, to decide whether to stay
on that plant or to move to a new plant. In the simulation model, pollinators used more
sophisticated departure rules, comparing the current host plant’s perceived nectar status to
the population mean. Plants with different proportions of nectarless flowers competed for
successful pollination over multiple seasons.

Ranges of key variables: Relative cost of self-pollination (0.5–1); number of pollinators acting
on a plant population per season (1–101); and proportion of nectarless flowers per plant (0–1).

Conclusions: Enhanced pollination success can drive the evolution of empty flowers in
plants that are reliant on vector-mediated pollination. When the costs of selfing are low, an
inflorescence with a low proportion of nectarless flowers is optimal, because pollination success
is primarily determined by pollen removal. When the costs of selfing are high, an inflorescence
with mostly nectarless flowers is optimal, because pollination success is primarily determined
by outcrossing. Low pollinator abundances lead to a decreased optimal proportion of empty
flowers to mitigate pollinator limitation.

Keywords: cross-pollination, geitonogamy, inbreeding depression, male function, nectar,
nectarless flowers, outcrossing, reward, self-pollination.

INTRODUCTION

Nectar plays an important ecological role in plant reproduction as the primary floral reward
offered to pollinators (Neiland and Wilcock, 1998). However, nectarless flowers appear repeatedly
within angiosperms and occur in three forms: (1) entirely nectarless species [e.g. one-third of
all orchids (Dressler, 1981)]; (2) nectarless individuals within an otherwise nectar-producing
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species [e.g. Prosopis grandulosa (Golubov et al., 1999)]; and (3) nectarless flowers within
nectar-producing inflorescences (Feinsinger, 1978), hereafter referred to as empty flowers. Field
surveys of plant communities in Costa Rica, India, and western Canada show that species
with empty flowers are relatively common (Feinsinger, 1978; Thakar et al., 2003; Tindall, 2006). Of the
90 species examined in these studies, 71 (79%) contained some percentage of empty
flowers, ranging from 1% [Zigadenus venenosus (Tindall, 2006)] to 68% [Latana camara
(Thakar et al., 2003)].

Two non-exclusive hypotheses have been proposed to explain the function of empty
flowers, both of which assume that pollinators cannot discriminate between empty flowers
and flowers that contain nectar. The first hypothesis suggests that empty flowers are an
energy-saving strategy that enables the plant to save resources normally allocated to nectar
production (Bell, 1986). The second hypothesis proposes that empty flowers enhance
pollination by manipulating pollinator behaviour to increase outcrossing and minimize
self-pollination (Smithson and Gigord, 2003). Inflorescences with many flowers typically experience
greater pollen removal by pollinators, but can suffer reduced reproductive success from
increased geitonogamy [self-pollination between flowers on the same plant (Harder and Barrett,

1995)]. Self-pollination can reduce the number or fitness of offspring as a consequence
of inbreeding depression [the expression of deleterious recessive alleles and/or decreased
heterozygosity at loci with heterozygote advantage (Charlesworth and Charlesworth, 1987, 1990)]
and/or pollen discounting [the wastage of pollen in selfing that could otherwise be used
in outcrossing (Nagylaki, 1976; Holsinger et al., 1984)]. Furthermore, there is generally a positive
but decelerating relationship between the amount of pollen removed by a single pollinator
and the fraction of that pollen that is successfully deposited on another plant (Lloyd, 1984;

Harder and Thomson, 1989). These diminishing returns for male function make it advantageous
for plants to restrict the amount of pollen removed by individual pollinators (Harder and

Thomson, 1989).
Empty flowers could alleviate the problems of geitonogamy and diminishing returns

by encouraging pollinators to visit fewer flowers per plant (Harder et al., 2001). The positive
correlation between nectar reward and the number of flowers visited per plant is well
documented (e.g. Zimmerman, 1983; Irwin and Brody, 1998; Johnson and Nilsson, 1999; Smithson, 2002), and low-
yield and empty flowers can encourage visitors to leave plants sooner than they would
have otherwise (Gill and Wolf, 1977; Hodges, 1985; Maloof and Inouye, 2000; Jersakova and Johnson, 2006). By
encouraging early departures from the plant, empty flowers may reduce geitonogamy
and pollen discounting, thus increasing the amount of pollen available for successful
deposition on compatible stigmas, hereafter referred to as ‘export’ (Johnson and Nilsson, 1999;

Harder et al., 2001).
The pollination-enhancement hypothesis suggests that there should be some optimal

proportion of empty flowers that maximizes pollination success by balancing self-pollen
deposition and pollen export. This proportion is expected to increase as the benefits of
empty flowers increase and/or the potential risks decrease. The pollination benefit of empty
flowers depends primarily on the costs of self-pollination. Conceptually, these can be
divided into genetic costs, largely determined by the degree of self-incompatibility and the
severity of inbreeding depression, and the cost of lost outcrossing opportunities caused by
pollen, ovule, and seed discounting. Therefore, the higher the cost of selfing, the greater the
proportion of empty flowers we would expect to be optimal. Conversely, if there is no cost
to selfing (i.e. self and outcross pollen and seeds are equally successful), there is no anti-
selfing benefit to having empty flowers. In fact, costs of selfing below 0.5 are outweighed by
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the benefit of contributing two gametes to a single offspring, in which case one might expect
plants to evolve mechanisms for autonomous, rather than pollinator-mediated, selfing
(Lloyd, 1992). The risk associated with empty flowers depends on pollinator abundance. Given
unlimited pollinator visitation, inflorescences could maintain a high proportion of empty
flowers for maximal outcrossing and still achieve complete pollen removal. Conversely, if
pollinators are scarce, plants with many empty flowers risk not having all of their pollen
removed (Harder and Thomson, 1989; Harder and Wilson, 1994). When the risk of not being pollinated is
high, plants are expected to encourage pollinators to visit all the flowers on an inflorescence
by having few or no empty flowers, despite a potential increase in self-pollination.

In this paper, we use two complementary approaches, an analytical model and a
simulation model, to explore the pollination-enhancement hypothesis of empty flower
evolution. Previous attempts to model the proportion of empty flowers in otherwise reward-
ing inflorescences have assumed that empty flowers are an energy-saving strategy, and have
modelled the costs of nectar production (Bell, 1986; Sakai, 1993; Smithson and Gigord, 2001; Thakar et al.,

2003). By explicitly considering the potential benefits from enhanced cross-pollination, our
model allows us to develop an alternative hypothesis about the evolution of empty flowers.
Here we examine how the optimal proportion of empty flowers that maximizes male fitness
is affected by (1) pollinator abundance and (2) the genetic cost of selfing. We present two
models describing a single, closed population in which plants are identical except for their
number of empty flowers. Plants compete for bee-mediated deposition of both self and
outcross pollen. Bee behaviour is modified by the number of empty flowers on a plant
such that bees visit fewer flowers on plants that have a higher proportion of empty flowers.
We systematically adjust pollinator abundance and the cost of selfing to determine how
these parameters affect which empty flower strategy is the most successful. Finally, we
discuss the implications of our results for the evolution of empty flowers.

METHODS

Description of system

We investigated the importance of empty flowers in modulating pollination success by
modelling pollen transfer in a single population of monocarpic plants with non-overlapping
generations (i.e. annuals). The total plant population size was assumed to be fixed through
time, with no long-term seed bank or dispersal.

Each plant in the population had a single inflorescence with F flowers (Table 1). All the
flowers on every plant were open simultaneously, completely overlapping with the presence
of nectar-collecting bees (the pollinators), and each flower had the same initial amount of
pollen (θ0). Flowers within a plant’s inflorescence were either nectarless (‘empty’) or ‘full’.
Nectar was assumed to have negligible production cost to the plant and the rate of refill
after a pollinator visit was instantaneous. These assumptions allowed us to test the
hypothesis that empty flowers could result purely from outcrossing considerations, without
having to invoke a cost of nectar production. Moreover, a flower’s nectar status was cryptic
to pollinators, which could not determine whether a flower was nectarless until visitation.
Other than the flowers’ nectar status, all flowers were identical.

Given that each plant had F flowers, there were F + 1 possible plant phenotypes with
unique proportions of empty flowers (e). These phenotypes ranged from no empty flowers
(e = 0) to all empty flowers (e = 1) in increments of 1/F. We did not consider the effects of
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inflorescence architecture, but rather assumed that the spatial arrangement of flowers on a
plant was inconsequential to the order in which the flowers were visited.

Each bee visited Vf flowers during a single season (Table 1). The distribution of these
visits among plants was determined according to the bee behaviour rules built into the
models. During each flower visit, the bees removed a fixed proportion (a) of the remaining
pollen on that flower. Bees lost a proportion (l) of the pollen they carried when moving
between two flowers on the same plant (as a consequence of passive loss and active groom-
ing). When arriving at a new flower on the same plant, bees deposited a certain proportion
(s) of the pollen they carried onto the flower’s stigma. Of this self pollen, a proportion (Ψ)
was unsuccessful in pollination because of the genetic cost of selfing (e.g. inbreeding
depression and self-incompatibility). For bees moving between two flowers on different
plants, the proportion of pollen that was not lost between flowers and that was subsequently
successfully deposited on the flowers of new plants was x. By analogy, x was to inter-plant
movement as the combination of 1 − l and s was to intra-plant movement. This means that
the value of x compared with s(1 − l) affects the relative efficiency of outcrossing versus
geitonogamy, in terms of pollen deposition. To explore how altering this relative efficiency
affects selection for empty flowers, we varied x while holding s and l constant. We con-
sidered the total ‘successful’ pollen of a plant to be its outcrossed pollen plus a proportion
(1 − Ψ) of its self pollen. The fitness values of plants were assumed to be correlated with the
proportion of their pollen that was successful. We considered only male fitness, hereafter
referred to as ‘fitness’.

Table 1. Parameter definitions and values used (footnoted papers gave a range of values from which
listed values were selected)

Parameter Definition Values used

B Number of bees in a plant population per season 1–101
Ng Number of plants per genotype in a population 5
F Number of flowers per plant 10
θ0 Initial amount of pollen in a flower 1000 grains
e Proportion of empty flowers on a plant 0–1
Vf Total number of flowers visited by a bee in a season 50
t Number of empty flower encounters that cause a bee to switch plants

(analytical model)
3

a Proportion of pollen removed during a single flower visit 0.5, 0.8a,b,c,d

l Proportion of pollen lost from bee between flowers on the same plant 0.5e

s Proportion of carried self-pollen deposited on a flower 0.04
x Proportion of pollen successfully exported to other plants 0.01, 0.02a,f

Ψ Genetic cost of selfing 0.5–1
Vp Total number of bee visits a plant will experience in a season

(analytical model)
Equation-based

OX(e) Total amount of successful outcrossed pollen from a single plant in a
season

Equation-based

SE(e) Total amount of successful self-pollen from a single plant in a season Equation-based
R Total amount of successful pollen from an individual plant in a season Equation-based

a Harder and Thomson (1989); b Thomson and Thomson (1989); c Harder (1990a); d Thomson and Goodell (2001);
e Rademaker et al. (1997); f Harder et al. (2000).
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Analytical model

We constructed an analytical model to calculate the average amount of ‘successful’ pollen
for all possible plant phenotypes in the described system. We considered the optimal propor-
tion of empty flowers given that all possible empty flower phenotypes were present in the
population. We examined the simple case where there were equal numbers of each phenotype.

The number of flowers a bee visits within a plant is dependent on the number of empty
flowers encountered, so each phenotype influenced bee behaviour differently. When arriving
on a new plant, each bee made a minimum of t visits to randomly chosen flowers, unless
this caused the pollinator to exceed its seasonal maximum number of visits (Vf). After the
pollinator visited its tth flower on a plant, and after every flower visited thereafter, the
pollinator could either move to a different randomly chosen flower on the same plant, or
move to a flower on a different plant. The pollinator left for a new plant if (a) it had already
made F visits to flowers on the current plant, such that each flower on the plant had received
one visit on average, or (b) it had already visited t empty flowers on the current plant. If
both conditions were false, the pollinator randomly chose a different flower on the same
plant. Thus, pollinators only used information about the current plant to decide whether to
leave or stay.

With these foraging rules, the number of flowers visited during a single plant visit was the
result of a modified hypergeometric random process. The modification comes from the
requirement that the final flower a bee visits before leaving a plant must be empty. Using this
distribution we calculated f (e), the expected number of flowers an individual bee visits
on a single visit to a plant with a proportion e empty flowers [see Appendix for further
explanation of f (e)].

There were B bees, each making Vf flower visits per season. The total number of times a
single plant in a population with Ng plants of each genotype was visited in a season was

Vp =
B ·Vf

� F

n = 0 � f �e = n

F � ·Ng�
. (1)

Using sums of geometric series, we define total successful outcrossed pollen from an
individual plant over one season as

OX(e) = xaθ0 �1 − α
f (e)

1 − α ��1 − β
Vp

1 − β � , (2)

and total successful selfed pollen from an individual plant over one season as

SE(e) = (1 − Ψ)aθ0�1 − β
Vp

1 − β � (1 − l)s

1 − α � f (e) −
1 − α

f (e)

1 − α � , (3)

where α = (1 − s)(1 − l) and β = F − af (e)

F
. [See Appendix for further explanation of the

function f (e) and derivation of equations (2) and (3).] Thus, the total successful pollen from
an individual plant in one season is

R = OX(e) + SE(e) , (4)

which we used as a measure of relative fitness.
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By calculating R over all possible values of e, we found the optimal proportion of empty
flowers at which fitness is maximized over a range of pollinator abundances (1 to 101),
selfing costs (0.5 to 1), two levels of a (0.5 and 0.8), and two levels of x (0.01 and 0.02)
(see Table 1). We limited our model to consider cost of selfing (Ψ) values above 0.5,
because values lower than this should promote the evolution of autonomous self-
fertilization (Lloyd, 1992) and so are not applicable to our model of a purely vector-mediated
pollination system.

Simulation model

A simulation model was constructed to describe the same basic system as in our analytical
model. This allowed us to explore the effects of alternative bee behaviours and variable bee
abundances. The simulation model tracked the amount of pollen in each flower in each
inflorescence in the population and described a distribution of pollinator behaviours for a
given value of e. We initially ran the simulation model with simplistic bee behaviour rules
similar to those used in the analytical model. These results were qualitatively similar, with
more noise in the simulation model results due to its stochastic components.

We then modified the bee behaviour rules so that bees could use limited population-level
and plant-level information to decide to leave a plant if they perceived it to have a below-
average nectar reward. On each new plant, a pollinator visited a minimum of three flowers
unless this caused the pollinator to exceed its total number of seasonal flower visits. There-
after, the pollinator left for a new plant if (a) it had already made F visits to flowers on
the current plant, or (b) the current proportion of visited flowers on the plant that were
empty exceeded the average proportion of empty flowers of all the plants in the population.
If conditions (a) and (b) were both false, the pollinator randomly chose a different flower
on the same plant. Note that pollinators occasionally ‘made mistakes’ by leaving a plant
early that actually provided a better-than-average nectar reward. These mistakes seem to
be consistent with pollinator behaviour in natural systems (J.R. Tindall, personal observations),
and reflect the fact that pollinators must make foraging decisions based on incomplete
information.

This model was run for 1000 simulated seasons and pollinator abundance was initially
assumed to be constant over each season. Because pollinator abundance can be highly
unpredictable, we also considered an alternative scenario in which each season’s pollinator
abundance was randomly drawn from a Poisson distribution. However, this had no
appreciable effect on our results.

To find the optimal proportion of empty flowers produced by plants under a range of
pollinator abundances, costs of selfing, and other mating system and pollinator traits, we
used an approach similar to a genetic algorithm. We assumed that the F + 1 phenotypes
directly corresponded to F + 1 genotypes (i.e. F alleles at a single locus). This scenario was
not meant to reflect the actual genetic control of empty flowers; rather, it was chosen to
allow phenotypes to compete in the arena of our simulation.

At the beginning of each run, there were Ng individuals of each genotype for a total of
Ng · (F + 1) individuals. The number of offspring each individual plant contributed to the
next season was determined randomly, but was, on average, in direct proportion to the total
successful pollen it produced in the current season. To avoid having the winning genotype
dependent on initial or transient abundances, we introduced rare mutations. Each season,
every potential offspring had a probability of µ (set at 1/500) of mutating to a different
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randomly chosen genotype. Thus, a genotype that became abundant early in each model
run was repeatedly confronted with rare ‘invaders’. We ran the simulation model for the
same range of parameters as the analytical model using increments of 0.05 for cost of
selfing and increments of 5 for mean pollinator abundance. We defined the ‘winning
genotype’ for each suite of model conditions as the genotype with the greatest average
abundance between seasons 500 and 1000.

RESULTS

Qualitatively, the results of the analytical and simulation models were very similar despite
the difference in bee behaviour (compare Fig. 1 and Fig. 2). The cost of selfing (Ψ) was
important in determining the optimal proportion of empty flowers. Relatively large Ψ
favoured plants with all empty flowers and relatively small Ψ favoured plants with all full
flowers (Fig. 1 and Fig. 2); however, an intermediate proportion of empty flowers was often
the optimal genotype (Fig. 1 and Fig. 2).

The way in which cost of selfing (Ψ) and bee abundance influenced the optimal
proportion of empty flowers was affected by the proportion of outcrossed pollen deposited
(x) and proportion of pollen removed (a). The value of Ψ at which the optimal proportion
of empty flowers became non-zero decreased as the relative efficiency of outcrossing versus
geitonogamy increased (x: compare top and bottom rows of panels in Fig. 1 and Fig. 2).
Also, there was a general increase in the optimal proportion of empty flowers as the
proportion of pollen removed (a) increased (compare the left and right columns of panels
in Fig. 1 and Fig. 2). However, when the relative efficiency of outcrossing versus
geitonogamy was low (x = 0.01), this increase in the optimal proportion of empty flowers
was apparent only for high levels of cost of selfing (Ψ > 0.75 in Fig. 1 and Fig. 2, panels
i and ii).

Increasing bee abundance had a positive effect on the optimal proportion of empty
flowers. Again, when the relative efficiency of outcrossing versus geitonogamy was low
(x = 0.01), this positive effect was apparent only for high levels of genetic cost of selfing
(Ψ > 0.75 in Fig. 1 and Fig. 2, panels i and ii).

Example model runs emphasize the stochastic nature of the simulation outcomes and the
effect of the cost of selfing (Ψ) and bee abundance (B) on the optimal proportion of empty
flowers (Fig. 3). These runs show that the most successful genotype changed over time,
especially during the early stages of the run. Runs of the simulation model occasionally
resulted in the dominance of plants with an intermediate proportion of empty flowers,
outside the range of conditions predicted by the analytical model (Fig. 1 and Fig. 2). This
was due to stochasticity in both realized bee behaviour and plant reproduction in the
simulation model (Fig. 3).

DISCUSSION

Our models support the hypothesis that nectarless flowers could evolve as a response to the
genetic cost of self-pollination, even when there is no energetic cost to producing nectar. As
the genetic cost of selfing increases, the difference in fitness between selfed and outcrossed
offspring increases and there is stronger selection on plants to promote pollinators to leave
an inflorescence before all the flowers have been visited. In this case, an inflorescence of
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mostly empty flowers is the optimal strategy for maximizing male reproductive success.
Conversely, an inflorescence with few empty flowers is the optimal strategy when the genetic
cost of selfing is low. The optimal proportion of empty flowers was often either 0 or 1, but
an intermediate proportion of empty flowers was the optimal strategy for a range of selfing
costs and bee abundances.

Results from both the analytical and simulation models show that bee abundance has an
important effect on the optimal proportion of empty flowers on a plant. The greater the bee
abundance, the higher the proportion of empty flowers that maximizes a plant’s pollen
export. As bee abundance increases, pollen export becomes less limited by the number of
bee visits a plant receives. Plants can then maximize their pollen export by encouraging bees
to leave with pollen from fewer flowers, thus minimizing the costs associated with selfing
(Iwasa et al., 1995; Harder et al., 2001). When bees are scarce, plants maximize their pollen export by
fully exploiting the bee visits they receive. Having few or no empty flowers encourages a bee
to remain on the plant and remove a larger proportion of pollen. When bees are limiting,
the export benefit of this increased removal outweighs the cost of pollen lost to selfing.
Similar results are obtained by modifying the number of flowers visited per bee per season
(not shown). Unfortunately, neither pollinator abundance nor visitation rates have been
quantified in the context of empty flower research, though their importance is not only
highlighted in our model, but has been identified in other studies (Harder, 1990a; Klinkhamer et al.,

1994; Thakar et al., 2003; Biernaskie and Cartar, 2004).

Fig. 1. The optimal number of empty flowers (0–10, shading) as a function of the cost of selfing and
number of bees for the analytical model. The model was run at four different combinations of the
proportion of pollen successfully exported to other plants (x) and the proportion of pollen removed
from a flower after a bee’s visit (a): (i) x = 0.01, a = 0.5; (ii) x = 0.01, a = 0.8; (iii) x = 0.02, a = 0.5;
(iv) x = 0.02, a = 0.8. Other parameter values are given in Table 1.
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The optimal proportion of empty flowers changes with the proportion of pollen a bee
removes from a flower (a) and this relationship is modified by changes in bee abundance.
There are several reproductive costs associated with high values of a, which include pollen
discounting as in our model (Klinkhamer et al., 1994; Harder and Wilson, 1997), and also pollen lost to
increased pollen layering and pollinator grooming (Harder, 1990a; Harder et al., 2001). Thus when a
is relatively small, a low proportion of empty flowers enables plants to increase their pollen
export by encouraging pollinators to visit more flowers without suffering the reproductive
costs usually associated with increased visitation. The difference between the optimal
proportion of empty flowers when a is low versus high is particularly evident under
conditions of low bee abundance (compare Fig. 1, panels i and ii), when the total pollen
removed from a plant is most severely limited by the absolute number of visits it receives.
Conversely, when bee abundance is high, the proportion of pollen removed by a bee
no longer limits total plant pollen removal and the main factor determining the optimal
proportion of empty flowers in our model is the genetic cost of selfing.

Our models build on previous work exploring the relationships between the cost of
selfing, geitonogamy, and pollinator abundance. Early mating-system models that did not
account for pollen discounting and the probability of successful outcrossing consistently
predicted disruptive selection for pure selfing when inbreeding depression (δ, equivalent to
our Ψ for self-compatible plants) < 0.5 and pure outcrossing when δ > 0.5 (reviewed in Harder and

Wilson, 1998; but see Holsinger, 1991, for an exception). Models by Harder and Wilson (1998) clarified that

Fig. 2. The optimal number of empty flowers (0–10, shading) as a function of the cost of selfing and
number of bees for the simulation model. The model was run at four different combinations of the
proportion of pollen successfully exported to other plants (x) and the proportion of pollen removed
from a flower after a bee’s visit (a): (i) x = 0.01, a = 0.5; (ii) x = 0.01, a = 0.8; (iii) x = 0.02, a = 0.5;
(iv) x = 0.02, a = 0.8. Other parameter values are given in Table 1.
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this conclusion holds even when pollen discounting is accounted for, as long as discounting
is equal among phenotypes. Our models explore scenarios in which pollen discounting is
not equal among phenotypes, but rather varies according to the degree of geitonogamy
phenotypes experience due to their proportion of empty flowers. In such circumstances,
intermediate proportions of empty flowers (and consequently intermediate levels of selfing)
can be selected under a range of selfing costs (Figs. 1 and 2). This apparent selection for
geitonogamy (the only mode of selfing allowed in our models) is largely the indirect result
of selection for increased outcrossing; as pollinators visit additional flowers per plant they
pick up more pollen, which is subsequently available for outcross pollination. This is most
obvious when Ψ = 1 (i.e. self-pollen grains make no contribution to fitness), and the
all-nectarful phenotype experiences the highest fitness (Fig. 1; pollination abundance < 10).
The fitness benefit of increased pollen export per pollinator is mediated by pollinator
abundance, as discussed above; when pollinators are abundant, it is outweighed by greater
pollen diversion to geitonogamy, but when pollinators are very scarce, the outcrossing
benefit of fewer empty flowers is sufficient to confer a fitness advantage (Figs. 1 and 2). This
conclusion is consistent with models by Harder et al. (2001), who found that at low pollinator
abundances, plants exported the most pollen when pollinators visited a high proportion of
flowers per plant, which in our model is equivalent to phenotypes with low proportions
of empty flowers. Similarly, Holsinger (1991) found that when the probability of successful
outcross pollen export was low (this occurs when pollinator abundance is low in our
model), genotypes that experienced higher degrees of selfing could increase in frequency,
and mixed mating systems of selfing and outcrossing became evolutionarily stable.

In addition to indirect selection for geitonogamy, our model allows geitonogamy to
confer a direct fitness advantage, which contrasts with previous models in which geiton-
ogamy is never advantageous (Lloyd, 1992). Lloyd’s pioneering work on selection for selfing
proposed that geitonogamy necessarily results in complete pollen and ovule discounting,
because it involves the same processes as outcrossing (Lloyd, 1988, 1992). In our model, this
is approximated when x ≈ s(1 − l), although an exact equivalence cannot be calculated as
self-pollination can occur multiple times whereas we model outcrossing as a single event.
However, when pollinator behaviour differs between inter- and intra-plant movements, such
as when bees groom more when flying between plants than when moving between flowers
on the same plant (Harder, 1990b), geitonogamy does not necessarily result in complete
discounting, and can be relatively more efficient in terms of pollen transfer than outcrossing
(Harder et al., 2001). Our model differs from Lloyd’s (1992) as it allows geitonogamous pollen
transfer to be more efficient numerically than outcross pollen transfer. When the efficiency
of outcross pollen deposition is decreased relative to that of geitonogamous deposition
(i.e. x is reduced while holding s and l constant), empty flowers become less advantageous,
as long as self pollen makes some fitness contribution (compare Fig. 1, panels iii and iv with
Fig. 2, panels iii and iv when Ψ < 1).

Our model tested two sets of pollinator behaviour rules. Alternative bee behaviour rules
did not appreciably affect our model results; however, flowers can be visited by many species
of animals that differ more drastically in morphology and behaviour (Wilson and Thomson, 1991).
Although there may be general patterns of pollinator behaviour rules, such as pollen
removal increasing with the amount of available pollen per flower (Conner et al., 1995), pollinator
species, and even individuals within species, can show significant differences in their
response to variation in floral traits. These responses may directly affect selfing patterns and
pollen transfer among plants (Thompson, 2001; Mitchell et al., 2004). It is reasonable to assume that
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these behavioural differences may also occur in response to empty flowers. Also, the primary
pollinator for a particular plant population may change, as pollinator abundance is highly
variable between years (e.g. Rush et al., 1995). Future research on the function of empty flowers
that considers these differences would help illuminate the generality of pollinator–empty
flower interactions. There is also a need for studies that simultaneously measure the
occurrence of empty flowers, pollinator abundance, and the costs of self-pollination and
nectar. This will allow for empirical testing of our models’ prediction that pollination
enhancement can drive the evolution of empty flowers.

Our models predict the evolution of entirely nectarless plants under a range of con-
ditions, but surveys of nectar volumes have found nectarless individuals to be uncommon
(Feinsinger, 1978; Thakar et al., 2003; Biernaskie and Cartar, 2004; Tindall, 2006). This seemingly unrealistic
model prediction occurs because the model environment lacks meta-population and
community structure, and pollinators must forage within the model patch. As a result, there
is no cost to being entirely nectarless, since our pollinators cannot choose to avoid nectarless
patches or species. In a more realistic environment, non-rewarding patches or species would
eventually be discriminated against in favour of those that offer reward (Cartar, 2004). For
example, Dactlyorozhea sambucina, a nectarless orchid, relies on naïve bumblebee-queen
pollinators, because experienced queens learn to avoid it (Nilsson, 1980). Furthermore, the more
common a deceptive plant is in a community, the more rapidly pollinators will stop visiting
that community (Ferdy et al., 1998). Thus, the structure of the plant community, especially
with respect to alternate foraging opportunities for pollinators, as well as the frequency of
deceptive individuals, may influence the evolution of empty flowers. Although entirely
nectarless species have evolved [e.g. one-third of all orchids (Dressler, 1981)], these species have
also evolved complex adaptations to ensure pollination by deception [e.g. food deception,
floral mimicry, and sexual deception (Jersakova and Johnson, 2006)].

Much of the previous work exploring the function of empty flowers has focused on the
energetic cost of nectar production (Bell, 1986; Gilbert et al., 1991; Sakai, 1993). The energy-saving
hypothesis for the function of empty flowers is based on the explicit assumption that nectar
production represents a significant energetic cost for plants (Feinsinger, 1978; Bell, 1986; Gilbert et al.,

1991), and the implicit assumption that increased nectar production reduces the resources
available for other plant functions, such as female reproduction (Pyke, 1991). The energetic cost
of nectar varies greatly among species. Although nectar is costly for some species [30% of
floral energy and up to 37% of daily plant photosynthate (Pleasants and Chaplin, 1983; Southwick,

1984)], such costs seem to be unusually high (reviewed in Harder and Barrett, 1992), and other research
has found nectar cost to be low [3% of floral tissue (Harder and Barrett, 1992) and as low as 4% of
daily plant photosynthate (Southwick, 1984)] or undetectable (Leiss et al., 2004). Although reducing
the cost of nectar may be important, our results suggest that pollination enhancement could
also drive the evolution of empty flowers.
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APPENDIX

The simple foraging rules used in the analytical model work such that the number of flowers
visited during a single plant visit is the result of a modified hypergeometric process. The
modification comes from the requirement that the final flower a bee visits before leaving a
plant must be empty. The expected number of flowers visited by a bee visiting a plant with
eF empty flowers is

f (e) = �
F − 1

n = t
�n ·

C(eF, t − 1)C((1 − e)F,n − t)

C(F, t − 1)
·
eF − (t − 1)

F − (n − 1) � , (A1)

where F is the total number of flowers on a plant, t is the number of empty flowers
encountered after which a bee will leave a plant, n is the number of flowers visited, and
C(x,y) represents ‘x choose y’ – the binomial coefficient function. This equation is the sum
of each possible value of n weighted by the probability of a bee encountering t empty
flowers out of n, where the last encountered flower is empty.

There were B bees, each making Vf flower visits per season. The total number of
times a single plant in a population with Ng plants of each genotype was visited in a
season was

Vp =
B ·Vf

� F

n = 0 �f �e = n

F � ·Ng�
. (A2)

All flowers initially contain the same amount of pollen, θ0. A bee visiting a plant removes
a proportion (a) of pollen from f (e) flowers out of the F flowers on the plant. The second
bee to visit that same plant will then experience some flowers with θ0 pollen and some with
(1 − a)θ0 pollen. The average amount of pollen in each flower on that plant on the second
bee visit is

θ(v = 2) = θ0 �F − a · f

F � .
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On the third bee visit, the average amount of pollen in each flower on that plant is

θ(v = 3) = θ(v = 2) �F − a · f

F �

= θ0 �F − a · f

F �
2 .

Thus, the expected amount of pollen in each flower on a given plant on the vth bee visit is

θ(v) = θ0 �F − a · f

F �
v − 1

. (A3)

We define the amount of pollen successfully outcrossed from a single plant on the vth visit
to that plant, where the bee visits f flowers, as OXsinglevisit ( f,v). A bee visiting any given
plant picks up aθ(v) from each flower it visits. Between visiting the first, second, and future
consecutive flowers on a plant, a bee loses a proportion l of the pollen collected on its body
due to passive loss and grooming. While visiting the second and any subsequent flowers on
that plant, a bee deposits a proportion (s) of the pollen collected on its body onto that
flower. This pollen is considered selfed pollen.

If a bee visits only one, two or three flowers on a plant ( f = 1, 2, 3) on the vth bee visit to
that plant and then leaves, the amount of successfully outcrossed pollen is

OXsinglevisit ( f = 1,v) = xaθ(v) ,

OXsinglevisit ( f = 2,v) = x[aθ(v)(1 − l)(1 − s) + aθ(v)] ,

OXsinglevisit ( f = 3,v) = x[(aθ(v)(1 − l)(1 − s) + aθ(v))(1 − l)(1 − s) + aθ(v)] .

By extension, the amount of successfully outcrossed pollen from a single plant on the
vth bee visit, where the number of flowers visited is f (e), can be described by the summed
geometric series:

OXsinglevisit ( f (e), v) = xaθ(v)�
f (e)

i = 1

[(1 − l)(1 − s)]i − 1

∴ OXsinglevisit ( f (e), v) = xaθ(v)
1 − [(1 − l)(1 − s)] f (e)

1 − (1 − l)(1 − s)
. (A4)

The total amount of pollen successfully outcrossed from a single plant over the entire
season (Vp plant visits) is

OX(e) = �Vp

v = 1
OXsinglevisit ( f (e), v)

= �Vp

v = 1�xaθ(v)
1 − [(1 − l)(1 − s)] f (e)

1 − (1 − l)(1 − s) �

= xa
1 − [(1 − l)(1 − s)] f (e)

1 − (1 − l)(1 − s)
·�Vp

v = 1
θ(v) ,
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where �Vp

v = 1θ(v) can be expressed as the sum of a geometric series:

�Vp

v = 1
θ(v) = �Vp

v = 1
θ0 �F − a · f

F �
v

= θ0

1 − �F − a · f (e)

F �
Vp

1 − �F − a · f (e)

F �

Therefore,

OX(e) = xaθ0

1 − [(1 − l)(1 − s)] f (e)

1 − (1 − l)(1 − s)
·
1 − � F − a · f (e)

F �
Vp

1 − �F − a · f (e)

F �
.

For simplicity, we let α = (1 − l)(1 − s) and β = F − a · f (e)

F
, such that

OX(e) = xaθ0�1 − α
f (e)

1 − α � ·�1 − β
Vp

1 − β � . (A5)

We define the amount of pollen successfully selfed on a single plant on the vth visit to that
plant as SEsinglevisit ( f, v), where the bee visits f flowers. If a bee visits only one, two or three
flowers on a plant ( f = 1, 2, 3) on the vth bee visit to that plant and then leaves, the amount
of successfully selfed pollen is

SEsinglevisit ( f = 1,v) = 0 ,

SEsinglevisit ( f = 2,v) = (1 − Ψ)aθ(v)(1 − l)s ,

SEsinglevisit ( f = 3,v) = (1 − Ψ)[aθ(v)(1 − l)s + (aθ(v)(1 − l)(1 − s) + aθ(v))(1 − l)s] ,

where 1 − Ψ is the proportion of self-deposited pollen that is reproductively successful.
Thus, the amount of successfully selfed pollen on a single plant on the vth bee visit, where

the number of flowers visited is f (e), can be described by the sum of the summed geometric
series:

SEsinglevisit ( f (e),v) = (1 − Ψ)aθ(v)(1 − l)s � f (e)

n = 2�
n

i = 2
[(1 − l)(1 − s)]i − 2

= (1 − Ψ)aθ(v)
(1 − l)s

1 − (1 − l)(1 − s)� f (e) −
1 − [(1 − l)(1 − s)] f (e)

1 − (1 − l)(1 − s) � . (A6)
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The total amount of pollen successfully selfed from a single plant over the entire season
(Vp plant visits) is

SE(e) = �Vp

v = 1
SEsinglevisit ( f (e),v)

= (1 − Ψ)aθ0�1 − �F − a · f (e)

F �
Vp

1 − �F − a · f (e)

F � �
(1 − l)s

1 − (1 − l)(1 − s)� f (e) −
1 − [(1 − l)(1 − s)] f (e)

1 − (1 − l)(1 − s) �.

Substituting in α and β, the equation simplifies to

SE(e) = (1 − Ψ)aθ0�1 − β
Vp

1 − β � (1 − l)s

1 − α � f (e) −
1 − α

f (e)

1 − α � . (A7)
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